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A further development of the work [ 1 1 is presented here. In comparison 
rlth the paper mentioned, this article contains a study of an elastic- 

plastic uedium (depending on the effect of compaction) rather than a 
rigid-plastic medium, rhlle the flor of the material in the incompress- 
ible state achieves a property similar to internal friction. The presence 
of an initial elastic component in the (u, 6) diagram allows us to study 
the entire process of the propagation of the shock vave including the 
emission (radiation) of an elastic vave. This problem is investigated 

belor as having spherical symmetry. 

1. ‘l&e properties of the medium should be given by means of a law of 
volume change and a law of deformation due to change of shape. ‘l’he law of 

voluma change (a - 8 diagram) is given in the form 

6 c 

E 

of a broken line (Fig. 1). It is assumed that the 
medium can exist only in two states: the elastic 

A 8 
initial (segpw?nt OA ) and the conpacted incom- 

I 
pressible (B,BC) state; the transition to the 

I 
second state takes place instantaneously at u = 

I 
CT* (this assm&ou requires, in general, a 

0 
proof 1. u denotes the mean stress and 0 denotes 

s, the dilatation. Line OABC corresponds to the 

PIQ. 1. 
active state (loading state). ‘Ihe unloading in the 
elastic state represents a reversible process, 
while in the inelastic state the unloading takes 

place with a change of volume (straight line CBB,). In the elastic 
state (line OA 1 the change of shape is subject to l-kmke’s law. bring 
flow in the incompressible state plastic work is expended. It is neces- 

sary to make some assuaptions about what kind of work this is. In the 
plastic flow of rntals the influence of the masn stress upon the plastic 
work is iusignif icaut. Such an asswf&.on appears not to be applicable 
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for soft soil. In this latter case it is more plausible to assume that 

the plastic work increases with an increase of the mean stress. So far, 

there have been few experiments along these lines. I propose to assume 

as a hypothesis (which should be verified by means of an experiment) 
that for spherical symnetry the change of the elemental plastic work in 

the transition from one state to a neighboring one be proportional to the 

change of the largest shear. The proportionality coefficient is assumed 

to be a function of the mean stress. lhis function should be determined 

by experiment. ‘lhe mathematical formulation of this hypothesis is 

Here A is the plastic work, 6A is its change during the transition to 

the neighboring state, Sy is the greatest shear during this transition. 

As long as there is no experimental information on the function n(o), 

one has to make sinple expedient assumptions. In the present article I 

shall assume that s(o) is a linear function.* 

lhis assumption leads to a plastic medium proposed at first by 

Ishlinskii [2 1. A similar ass’umption on the soil property was made by 

Kompsneets in [ 3 1 . The following is a study of the propagation of a 

spherical wave in the described continuous medilnn caused by the detonation 

of a charge which filled a spherical cavity (cavern). It is assumed that 

at t = 0 the explosives occupy the initial volume of the cavity. ‘Ihe ex- 

pansion is accomplished adiabatically. We do not analyze the wave process 

inside the cavity. 

2. We relate the motion to a spherical system of coordinates whose 

center is located at the center of the spherical cavity. We denote the 

running radius by r, let u(r, t) be the radial displacement, u(r, t) the 

radial velocity, (rr oa 
“P 

the stress components. lhder the conditions 
of spherical symnetry up = uw and we obtain for the mean stress 

d = $ (& + 24 

In the elastic as well as in the plastic state the equation of motion 

has the form 

(2.1) 

For an elastic medium p1 2 = pl. 
tion (2.1) by Hooke’s law ’ 

It is necessary to supplement Equa- 

l A soil model of very general form was proposed by S.S. Grigorian [ 4 1. 
The scheme studied in this paper is a special case of it. 
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In the elastic state, as 
Eulerian and the Lagraugean 
dv/dt . 

0, = MJ+ 2pg 
( 
e=g+-f) 

usual, we do not differentiate between the 
description of the process, i.e. du/dt = 

In the plastic state, because of incorcqressibility, we have 

where C(t) is an arbitrary function. Assuming that then 

Br=av__E_ - 3c 0) 
at Lb r = - rs 

and aualyzing the plastic flow of an elemental spherical layer, it 
follows ou the basis of the energy balance that 

dv 
fJz -ai- (2.2) 

Substitutk from (2.1) we find 

or - 0, = + m (0) (2.3) 

which represents sane aplasticity condition.. As long as the necessary 
experimental results are not available we shall propose that 

From this follows 

f m (0) = moo + m, 

In this paper 
plausible result 

(1 - 
a, = - 

no') or - ml m0 
1+2mlo ’ 

m,’ = 3 

we choose for so’ the value l/4. ‘Ihis leads to the 

ou= 2 ~o,--fml (2.4) 

‘Ihe constant s1 has the dimnsions of stress; it is expedient to 
assum that nI > 0. 

Ixt us asmme au adiabatic expansion of the explosion products. Thus 
we find the stress u. at the walls of the cavity to be 

(2.5) 

where a is the initial radius of the cavity and y the adiabatic exponent. 
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It is asswmd that the initial stress cvs = o,(a) is sufficiently 
large and capable of causing in the vicinity of the cavity a compaction 
of the soil which then continues to propagate. With the hypotheses stated 
above the propagation process of the shock wave can be described in terms 
of the following consecutive stages: 

1) the c-action shock wave propagates through the undisturbed 
medium; 

2) an elastic wave propagates through the undisturbed medium; behind 
it there follows a compaction zone whose boundary is the shock front, 
and the compaction of the soil continues; 

3) an elastic wave propagates through the undisturbed medium; behind 
it there follows a compacted zone whose boundary is a contact discon- 
tinuity. Ihe plastic flow continues, but there is no new compaction of 

the mediuz; 

4) a compacted zone is established; the back front of the elastic wave 
has broken away from it and goes to infinity. 

3. let us set up the equations and boundary conditions for the de- 
scription of each of the enumerated stages (the question of uniqueness 
of the solution of the problem has not yet been studied). 

let us analyze the first stage (Fig. 2). The radius of the shock wave 
is denoted by r,. 'lhe mechanical conditions at the shock wave reduce to 
the following two: 

rz(r,, t) = zrs'r wa(r,, t) = -zplG'2, z=+ (3.1) 

FIG. 2. 

'lhe index 2 refers to the compacted state of 
the soil, the index 1 to the elastic state. 'lhe 
prime indicates differentiation with respect to 
time. 

In the description we have adopted the soil 
represents a mediun with a separating energy. 
'lhus the mechanical conditions at the shock wave 
are not related to the energy conditions, which 
should serve as a check for the energy balance 
at the shock wave. 

The equation of motion (2.1) together with 
the incompressibility condition and the plasti- 
city condition (2.3) yields the following ex- 
pression for the radial stress coqonent: 
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=r = PC (0 
2P2 ca (4 YiT_ y, +C!+.!l -.-mm’ (d = j-m,) (3.2) 

Here C(t) and C,(t) are arbitrary functions of time. Functions C(t) 
and C,(t), just as two other functions r,(t) and r,(t), should be found 
from the boundary conditions. Two conditions (3.1) at the shock wave are 

already written out; the two other conditions are stated at the moving 
bouudary of the cavity 

v (ru, q = ro’ U), Q PO’ 0 = 00 fro) 13.3) 

One of the four unknown functions can be taken as the basic unknown 
for which, by eliminating the remaining ones, we obtain one equation. We 
choose r#J as the uuknown and denote this quantity by the letter z. We 
obtain an ordinary second order differential equation for z, which is 
nonlinear and which does not contain time explicitly. If one interchanges 
the roles of the unknowns by takk z as the independent variable at 
z* = dz/dt at the unkuown function then we obtain for z'* a first order 
linear equation 

d~+P(%)e’2=Q(z) (3.4) 
Here 

P (2) = 32pppl 
I+=% 

2 -’ 
Q tz) _ iI2 m’z”*- (az + BP (00 + m’) 

2 In - 
az + e 

In 2 
az f B 

Equation (3.4) is to be integrated over the semi-infinite segment 

(a3, + m).'lhe initial condition (at z = a31 is obtained if in the other 
equations (3.1) and (3.31 one goes over to the limit, lettiug r0 + a and 

r,+ a. 

'lhus, we obtain 
9a‘ 

2’2(u3) = --$J, (3.5) 
1 

lhe function ua, which enters Q(z), depeuds on z and, according to 
(2.51, is expressed by the formula 

(3.6) 

EkIuation (3.4) is integrated by qudratures; sn evaluation of the in- 
definite integrals in terms of eleamutary functions is not perfonred. 
The integrals can be evaluated approximately by different methods. How- 
ever, before one goes into approximate nmerical calculations, it is 
necessary to detemine the qualitative properties of Equation (3.4). 
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When studying the field of directions determined by this equation, one 
can show that the solution of Equation (3.4), which corresponds to the 
initial condition (3.5), decreases monitonically with increasing z (at 
least, starting from some value of 2 ). Furthermore, evaluating 1 Q(z 11 
one can show that lim z’* = 0 asz+w. ‘lhis means that the velocity of 
motion of the shock wave front decreases and approaches zero. Such a 
derivation leads to the conclusion that the first phase of motion cannot 
continue for all time. After the velocity of the shock wave becomes equal, 
and later also less than the speed of sound in the undisturbed medium, 
there should appear an elastic (sound) wave in front of the shock wave, 
i.e. there appears a second phase of motion. 

4. ‘lhe new phase of motion will differ by the conditions at the shock 
wave, which now propagates along the zone of elastic disturbance. 

Instead of conditions (3.1) we obtain 

In the plastic 
(3.2). 

‘lhe conditions 

In the elastic 

a2 (rr, t) = al (rr, t) - -a$ pr - P2 (rrr Ql’ (4.1) 

v2 (r .I t) = VI (r I, t) fi + ur ’ 
?8 

P (44 

zone the stress ur is expressed as before by formula 

(3.3) at the boundary of the cavity are also preserved. 

zone the radial stresses and the velocity are expressed, 
respectively, by the formulas 

where a0 is the speed of sound in the elastic medilrm. 

The forward front of the elastic zone does not generate any additional 
conditions. The cmly requirement is its propagation -along the character- 
istic,’ i.e. with sound velocity. 

!Smvning up what we have said so far about the problem of the second 
phase of motion, we come to the conclusion that it is necessary here to 
determine five unknown functions C(t), C (t), r (t), r (t) and F(t), 
while there are only four equations (4.2f, (4. l! and (3.3) available. Ihe 
additional condition can be obtained from considerations of the stabil- 
ity of the shock wave. It is known that independently from the thenno- 
dynamic properties of the medium I5 1 the shock wave propagates with 
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supersonic velocity along the region which lies ahead of its front and 
with subsonic velocity along the region extending behind the front. Be- 
hind the front the medium is incompressible, the speed of the propaga- 
tion of sound is infinite and therefore the corresponding requirement is 
always fulfilled. From the point of view of the second phase of motion, 
in this phase the velocity of the shock wave with respect to the particles 
lying ahead of the front is always mnaller than the velocity of sound in 
the region ahead of the front. Ihis means that for 0 < o1 < u the motion 
will be definitely unstable. If a motion nevertheless takes p ace f in the 
second phase then this will be possible only on one assumption, namely, 
that 

a1 = as (4.5) 

This assunption we shall treat, in fact, as the missing condition (a 
direct proof of the stability of motion in this case should also be per- 
formed)*. 

Let us also make the following simplification: the second phase occurs 
when the radius of the front of the shock wave already considerably ex- 
ceeds (several times) the initial radius of the cavity. Then it is 
natural to replace formulas (4.3) and (4.4) by the following approxima- 
tion: ** 

it 

Fran the assumption (4.5) considering 

at A + 2P 
a -=m+I/StL 

follows that the boundary values ut and u at the front of the shock 
wave at the side of the elastic region will be 

(4.7) 

Since now the boundary conditions ahead of the shock wave front are 
known, the four equations (4.21, (4.1) and (3.3) are sufficient to de- 
termine the four functions C(t), C,(t), r,(t) and r,(t). ‘lhe unknown 
function F’$t) is then faund from the functional equation 

F”(t-y) = +$-p(t) (4.8) 

l See also161. 

l * This simplification is the more correct the smaller the extent of the 

second phase of motion. It would be desirable to replace this assump- 

tion by more accurate ones in future. 
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Conditions (3.3) and (4.2) are explicitly 

From that 

C (t) ‘= ar *r ’ + E v1 ‘ , 
Pa 

(4.9) 

At the beginning of the second phase vl/r,’ is a very small quantity, 
and at the end it approaches unity. As a first approximation ue take 

d (rz) = ad (r,3) (4.10) 

‘lhis is justified by the consideration that in the expansion of the 
cavity the main part should be played by the ccmpaction of the soil, 
while the contribution to this expansion of the elastic yielding of the 
external region cannot be considerable. (This assqtion refers to a 
disguised explosion. With the participation of a free surface the 
mechanism of the expansion of the cavity may be some other one). 

The integration of Equation (4. lo), taking into account the initial 
condition, which requires continuity of r0 as a function of rs, leads to 
the result 

r0 3 F ars3 $- p 

Now one can introduce, as in the previous section, z = rs3 as the in- 
dependent variable and z’* as the unknown function. We obtain the follor- 
ing equation for this function 

l-kTt3Zo= az + /3 and function ua is expressed by means of formula 
(3.6). lhis first order equation is nonlinear in z ‘*. ‘Ihe initial condi- 
tion is the continuity condition on z’ at the transition from the first 
phase of motion to the second one. The continuity of z’ folloxs from the 
fact that although the right-hand sides of the differential equations 
(3.4) and (4.11) are different, the changes, honever, do not have an 
miapulsiveW character during the change of the phases of motion. One can 
construct isoclinics for Equation (4.11) such that one can clarify the 
qualitative character of the motion in the second phase. ‘lhe study shows 
that in this phase z’ (and consequently also the velocity of the front 
rs’) till decrease monotonically and approach zero. 
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5. It is easily shonn that the described phase of motion cannot extend 
to the state of test. Actually, before r, goes to zero, the equality 
r* = u1 will occur, and because of the law of conservation of mass 

(r“ - Pi) Pl = bo'- h) P2 

where re’ = ut should hold. lhus at the given moment the shock wave, 
having completely exhausted itself, ceases to exist. However, the motion 
still persists. It is natural to describe the following, third, stage of 
motion as a motion with a contact discontinuity, where at the boundary, 
which separates the c-acted region from the elastic one, the velocities 
as well as the stresses are equal. 

The boundary conditions at the contact discontinuity will then be ex- 
pressed as follows: 

Q2 (rr, q = al@‘, 0, ?h(r,, t) = h(rs, t) (5.1) 

One should supplement them by the condition due to which the surface 
of the contact discontinuity would consist of identically the s88e 
particles 

rr’ = VI (rrc q (5.2) 

The conditions (3.3) at the boundary of the cavity remain the same as 
before. Thus we have here five relations for determining the values 

C (0, Ci (t), ro(t), r8 (0, vi (rr, t), o1 (rr, t) 

lhe last tro functions ul and u1 are independent. Actually, within the 
accepted accuracy 

aI (rr, t) = - (h + 2~) n+ 

lhe number of equations corresponds to the number of unhnonns which 
can thus be found from here. If we introduce as before z = F,~, m obtain 
a differential equation for this unhnown function 

6(h+&) 2’ -- 
=oP2 L % 

!!$ [z’h - (2 - pop] (5.3) 

Here &, is the volune of the medium c-ted during the whole dura- 
tion of the process multiplied by 3/4 n. The initial condition on z’* 
comes from the continuity of this function at the transition from the 
second phase of motion to the third one. 

A study of Equation (5;3) shows that z’~ goes to zero at some finite 
value z. This corresponds to the stopping of the motion of the plastic 
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layer. There the third stage of motion ends. 

After zP2 has been found as a function of z one can determine the law 

of motion of the surface of discontinuity (inpulsive or contact). In 

fact, if 

2” = f(z), then i-j+ = t 

under the condition that the time is counted from the instant of the ex- 

plosion. It should be noted that, although in principle this third phase 

of motion is unavoidable, its duration and the practical meaning are 

obviously negligible. 

r 

FIG. 3. 

6. ‘Ihe last stage of motion, which arises after the stopping of the 
plastic zone, remains to be studied. In this stage the motion takes 

place only along the outside region where the elastic wave propagates. 

Its propagation is determined by that ninitialm velocity distribution 

which occurs at the instant of the stopping of the plastic zone. ‘Ihere 

is then a rear front being formed next to it, which separates it from 

the boundary of the compressed zone, and the elastic wave goes to in- 

finity. lhis part of the problem is solved by mll-known means. 

From our analysis in relation to the accepted values of the parameters, 

we can determine the instances of transition of one phase of motion into 

the other, the radius and volume of the c-acted zone,the radius of the 

cavity, the energy of the radiated elastic wave and the energy irre- 

versibly lost in plastic deformation. However, the solution of all these 
problems requires the completion of numerical calculations. ‘lhe kine- 

matical picture of the propagation of the boundary of the cavity and the 

boundary of the compressed medium can be portrayed qualitatively in Fig. 

3, where time is plotted along the abscissa, and the boundaries of the 
respective regions during all studied phases of motion are plotted along 
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the ordinate. 

for 
I should like to express my gratitude to A.A. Grib and S.S. Grigorian 
discussing this paper with me. 
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